Join our Telegram Channel

কষে দেখি 8.2 || 8. উৎপাদকে বিশ্লেষণ || WBBSE Class 9 Math Solution

 নবম শ্রেণী গণিত সমাধান | 8. উৎপাদকে বিশ্লেষণ | কষে দেখি 8.1 সমাধান 



নবম শ্রেণী কষে দেখি 8.2 সমাধান 

নীচের বীজগাণিতিক সংখ্যামালাকে উৎপাদকে বিশ্লেষণ করিঃ 

1. \(\frac{x^4}{16}-\frac{y^4}{81}\)

সমাধানঃ

 \(\frac{x^4}{16}-\frac{y^4}{81}\)

=\(\left(\frac{x^2}{4}\right)^2-\left(\frac{y^2}{9}\right)^2\)

=\(\left(\frac{x^2}{4}+\frac{y^2}{9}\right)\left(\frac{x^2}{4}-\frac{y^2}{9}\right)\)

=\(\left(\frac{x^2}{4}+\frac{y^2}{9}\right)\left\{\left(\frac{x}{2}\right)^2-\left(\frac{y}{3}\right)^2\right\}\)

=\(\left(\frac{x^2}{4}+\frac{y^2}{9}\right)\left(\frac{x}{2}+\frac{y}{2}\right)\left(\frac{x}{2}-\frac{y}{2}\right)\)



2. \(m^2+\frac{1}{m^2}+2-2m-\frac{2}{m}\)

সমাধানঃ

\(m^2+\frac{1}{m^2}+2-2m-\frac{2}{m}\)

\(=\left(m\right)^2+\left(\frac{1}{m}\right)^2-2\left(m+\frac{1}{m}\right)+2\) 

\(=\left(m+\frac{1}{m}\right)^2-2.m\mathrm{.}\frac{1}{m}-2\left(m+\frac{1}{m}\right)+2\) 

\(=\left(m+\frac{1}{m}\right)^2-2-2\left(m+\frac{1}{m}\right)+2\) 

\(=\left(m+\frac{1}{m}\right)^2-2\left(m+\frac{1}{m}\right)\) 

\(=\left(m+\frac{1}{m}\right)\left(m+\frac{1}{m}-2\right)\) 



3. \(9p^2-24pq+16q^2+3ap-4aq\)

সমাধানঃ

\(9p^2-24pq+16q^2+3ap-4aq\)

\(=\left(3p\right)^2-2.3p.4q+\left(4q\right)^2+a(3p-4q)\)

\(=\left(3p-4q\right)^2\ +a(3p-4q)\)

\(=(3p-4q)(3p-4q+a)\)



4. \(4x^4+81\)

সমাধানঃ

\(4x^4+81\)

\(=\left(2x^2\right)^2+\left(9\right)^2\)

\(=\left(2x^2+9\right)^2-2.2x^2.9\)

\(=\left(2x^2+9\right)^2-36x^2\)

\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)

\(=(2x^2+9+6x)\ (2x^2+9-6x)\)

\(=(2x^2+6x+9)\ (2x^2-6x+9)\ \)


5. \(x^4-7x^2+1\)

সমাধানঃ

\(x^4-7x^2+1\)

\(=x^4+2x^2+1-9x^2\)

\(=\left(x^2\right)^2+2.x^2.1+\left(1\right)^2-\left(3x\right)^2\)

\(=\left(x^2+1\right)^2-\left(3x\right)^2\)

\(=(x^2+1+3x)\ (x^2+1-3x)\)

\(=(x^2+3x+1)\ (x^2\ -3x+1)\)


6. \(p^4-11p^2q^2-q^4\)

সমাধানঃ

\(p^4-11p^2q^2-q^4\)

\(=p^4-2p^2q^2-q^4-9p^2q^2\)

\(=\left(p^2\right)^2-2p^2q^2-\left(q^2\right)^2-9p^2q^2\)

\(=\left(p^2-q^2\right)^2-\left(3pq\right)^2\)

\(=(p^2-q^2+3pq)(p^2-q^2-3pq)\)

\(=\left(p^2+3pq-q^2\right)(p^2-3pq-q^2)\)


7. \(a^2+b^2-c^2-2ab\)

সমাধানঃ

\(a^2+b^2-c^2-2ab\)

\(=a^2-2ab+b^2-c^2\)

\(=\left(a-b\right)^2-c^2\)

\(=(a-b+c)(a-b-c)\)


8. 3a(3a+2c)-4b(b+c)

সমাধানঃ

 \(3a(3a+2c)-4b(b+c)\ \)

\(=9a^2+6ac-4b^2-4bc\)

\(=\left(3a\right)^2-\left(2b\right)^2+6ac-4bc\)

\(=(3a+2b)(3a-2b)+2c(3a-2b)\)

\(=(3a-2b)(3a+2b+2c)\)


9. \(a^2-6ab+12bc-4c^2\)

সমাধানঃ

\(a^2-6ab+12bc-4c^2\)

\(=a^2-\left(2c\right)^2-6ab+12bc\)

\(=(a+2c)(a-2c)-6b(a-2c)\)

\(=(a-2c)(a+2c-6b)\)

\(=(a-2c)(a-6b+2c)\)


10. \(3a^2+4ab+b^2-2ac-c^2\)

সমাধানঃ

  \(3a^2+4ab+b^2-2ac-c^2\)

\(=4a^2-a^2+4ab+b^2-2ac-c^2\)

\(=\left(2a\right)^2+2.2a.b+b^2-(a^2+2ac+c^2)\)

\(=\left(2a+b\right)^2-\left(a+c\right)^2\)

\(=\{(2a+b)+(a+c)\}\{(2a+b)-(a+c)\}\)

\(=(2a+b+a+c)(2a+b-a-c)\ \)

\(=(3a+b+c)(a+b-c)\)



11. \(x^2-y^2-6ax+2ay+8a^2\)

সমাধানঃ

 \(x^2-y^2-6ax+2ay+8a^2\)

\(=x^2-6ax+9a^2-y^2+2ay-a^2\)

\(=x^2-2.x.3a+\left(3a\right)^2-(\ y^2-2ay+a^2)\)

\(=\left(x-3a\right)^2-\left(y-a\right)^2\)

\(=\{(x-3a)+(y-a)\}\{(x-3a)-(y-a)\}\)

\(=(x-3a+y-a)(x-3a-y+a)\)

\(=(x+y-4a)(x-y-2a)\)



12. \(a^2-9b^2+4c^2-25d^2-4ac+30bd\)

সমাধানঃ

\(a^2-9b^2+4c^2-25d^2-4ac+30bd\)

\(=a^2-4ac+4c^2-9b^2+30bd-25d^2\)

\(=a^2-2.a.2c+\left(2c\right)^2-{\left(3b\right)^2-2.3b.5d-+\left(5d\right)^2}\)

\(=\left(a-2c\right)^2-\left(3b-5d\right)^2\)

\(=\{(a-2c)+(3b-5d)\}\{(a-2c)-(3b-5d)\}\)

\(=(a-2c+3b-5d)(a-2c-3b+5d)\)

\(=(a+3b-2c-5d)(a-3b-2c+5d)\)



13. \(3a^2-b^2-c^2+2ab-2bc+2ca\)

সমাধানঃ

 \(3a^2-b^2-c^2+2ab-2bc+2ca\)

\(=3a^2-b^2-c^2+3ab-ab-bc-bc+3ca-ca\)

\(=3a^2+3ab+3ca-ab-b^2-bc-ca-bc-c^2\)

\(=3a(a+b+c)-b(a+b+c)-c(a+b+c)\ \)

\(=(a+b+c)(3a-b-c)\)



14. \(x^2-2x-22499\)

সমাধানঃ

 \(x^2-2x-22499\)

\(=x^2-2x+1-22500\)

\(=\left(x-1\right)^2-\left(150\right)^2\)

\(=(x-1+150)(x-1-150)\)

\(=(x+149)(x-151)\)

15. \((x^2-y^2)(a^2-b^2)+4abxy\)

সমাধানঃ

\((x^2-y^2)(a^2-b^2)+4abxy\)

\(=a^2x^2-a^2y^2-b^2x^2-b^2y^2+2abxy+2bxy\)

\(=\left(ax\right)^2+2.ax.by+\left(by\right)^2\)

        \(-{\left(ay\right)^2+2.ay.bx+\left(bx\right)^2}\)

\(=\left(ax+by\right)^2-\left(ay-bx\right)^2\)

\(=\{(ax+by)+(ay-bx)\}\{(ax+by)-(ay-bx)\}\)

\(=(ax+by+ay-bx)(\ ax+by-ay+bx)\)


Post a Comment

0 Comments