Join our Telegram Channel

কষে দেখি 5.1 | 5. ঘনফল নির্ণয় | WBBSE Board Class 8 Math Solution

5. ঘনফল নির্ণয় | কষে দেখি 5.1 | Exercise 5.1 | Ganit Prabha Class VIII math solution | WBBSE Class 8 Math Solution in Bengali


গণিত প্রভা VIII কষে দেখি 5.1 সমাধান 👇


1. দুটি ঘনক তৈরি করি যার একটি বাহুর দৈর্ঘ্য যথাক্রমে 5 সেমি. ও 1 সেমি.। 

কতগুলি 1 সেমি. দৈর্ঘ্যের বাহুবিশিষ্ট ঘনক জুড়ে এই বড়ো ঘনক পাব হিসাব করে লিখি।

সমাধানঃ

যে ঘনকের বাহুর দৈর্ঘ্য 5 সেমি. তার ঘনফল 
= 5 × × 5 ঘনসেমি.
= 53  ঘনসেমি.   
= 125 ঘনসেমি.
যে ঘনকের বাহুর দৈর্ঘ্য 1 সেমি. তার ঘনফল 
 = 1 × × 1 ঘনসেমি.
 = 13 ঘনসেমি.
 = 1 ঘনসেমি.

বড়ো ঘনক তৈরি করতে 1 সেমি. দৈর্ঘ্যের ঘনক লাগবে
=1251 টি
=125 টি


2. সুমন্ত অনেকগুলি 1 সেমি. দৈর্ঘ্যের বাহুবিশিষ্ট ঘনক তৈরি করেছে। মনামী সেই ঘনকগুলি জোড়া লাগিয়ে বড়ো ঘনক তৈরির চেষ্টা করেছে। হিসাব করে দেখি নীচের কোন সংখ্যক ঘনকের ক্ষেত্রে মনামী বড়ো ঘনক তৈরি করতে পারবে।
(i) 100     (ii) 1000 (iii) 1331
(iv) 1210    (v) 3375 (vi) 2700
সমাধানঃ
যে সংখ্যাগুলিকে পূর্ণঘন আকারে লেখা যাবে সেগুলির ক্ষেত্রে 1 সেমি. দৈর্ঘ্যের বাহুবিশিষ্ট ঘনককে কাজে লাগিয়ে বড়ো ঘনক তৈরি করা যাবে। 
(i) 100 = 2 × × × 5
= 22×52
100 কে পূর্ণঘন সংখ্যা আকারে লেখা যাবে না
সুতরাং,  100 কোনো পূর্ণসংখ্যা 3
এক্ষেত্রে বড়ো ঘনক তৈরি করা সম্ভব নয়। 

(ii) 
1000=2×2×2×5×5×5
=(2×5)×(2×5)×(2×5)
=10×10×10
                =103 
1000 একটি পূর্ণঘনসংখ্যা
এক্ষেত্রে বড়ো ঘনক তৈরি করা সম্ভব।

(iii) 
1331=11×11×11=113
1331 একটি পূর্ণঘনসংখ্যা
এক্ষেত্রে বড়ো ঘনক তৈরি করা সম্ভব। 

(iv) 
1210=11×11×10=112×10
1210 কে পূর্ণঘন সংখ্যা আকারে লেখা যাবে না
সুতরাং, 1210 কোনো পূর্ণসংখ্যা 3
এক্ষেত্রে বড়ো ঘনক তৈরি করা সম্ভব নয়। 


(v) 
3375=3×3×3×5×5×5
=(3×5)×(3×5)×(3×5)
=15×15×15= 153
3375 একটি পূর্ণঘনসংখ্যা
এক্ষেত্রে বড়ো ঘনক তৈরি করা সম্ভব। 

(vi) 
2700=3×3×3×2×2×5×5
=33×22×52
2700 কে পূর্ণঘন সংখ্যা আকারে লেখা যাবে না
সুতরাং,  2700 কোনো পূর্ণসংখ্যা33
এক্ষেত্রে বড়ো ঘনক তৈরি করা সম্ভব নয়। 

3. নীচের সংখ্যাগুলির মধ্যে কোনটি পূর্নঘন সংখ্যা নয় লিখি।
    (i) 216         (ii) 343     (iii) 1024
    (iv) 324 (v) 1744     (vi) 1372
সমাধানঃ
(i) 216=3×3×3×2×2×2
=(3×2)×(3×2)×(3×2)
=6×6×6
= 63
216 একটি পূর্ণঘন সংখ্যা 

(ii) 343 = 7×7×7=73
343 একটি পূর্ণঘন সংখ্যা 

(iii) 1024=8×8×8×2
= 83×2
1024 কে কোনো সংখ্যার ঘন হিসাবে প্রকাশ করতে পারব না।
1024 একটি পূর্ণঘন সংখ্যা নয়। 

(iv) 324=3×3×3×3×2×2
  =34×22
324 কে কোনো সংখ্যার ঘন হিসাবে প্রকাশ করতে পারব না।  
324 একটি পূর্ণঘন সংখ্যা নয়। 
(v) 1744=2×2×2×2×109
=23×2×109
1744 কে কোনো সংখ্যার ঘন হিসাবে প্রকাশ করতে পারব না।  
1744 একটি পূর্ণঘন সংখ্যা নয়। 

(vi) 1372=7×7×7×2×2=73×22
1372 কে কোনো সংখ্যার ঘন হিসাবে প্রকাশ করতে পারব না।  
1372 একটি পূর্ণঘন সংখ্যা নয়। 


4. দেবনাথ একটি আয়তঘন তৈরি করেছে যার দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে 4 সেমি., 3 সেমি., ও 3 সেমি.। হিসাব করে দেখি এইরকম কতগুলি আয়তঘন জুড়ে দেবনাথ ঘনক তৈরি করতে পারবে।
সমাধানঃ
আয়তঘনটির আয়তন =4×3×3 ঘনসেমি.
4, 3 ও 3 এর ল.সা.গু =12
∴ দেবনাথ যে নতুন ঘনক তৈরি করবে তার বাহুর দৈর্ঘ্য হবে 
= 12 সেমি.
নতুন ঘনকের আয়তন =12×12×12 ঘনসেমি.
∴ নির্ণেয় আয়তঘনের সংখ্যা 
=12×12×124×3×3 টি 
= 48 টি


5. নীচের সংখ্যাগুলিকে ক্ষুদ্রতম কোন ধনাত্মক সংখ্যা দিয়ে গুন করলে গুনফল পূর্নঘন সংখ্যা হবে হিসাব করে লিখি।
(i) 675 (ii) 200 (iii) 108 (iv) 121 (v) 1225
সমাধানঃ
(i) 675=5×5×3×3×3
=52×33
675 কে 5 দিয়ে গুন করলে গুনফল পূর্ণঘন সংখ্যা হবে।
(ii) 200 = 5×5×2×2×2
 = 52×23
200 কে 5 দিয়ে গুন করলে গুনফল পূর্ণঘন সংখ্যা হবে।

(iii) 108=2×2×3×3×3
=22×33 
108 কে 2 দিয়ে গুন করলে গুনফল পূর্ণঘন সংখ্যা হবে।

(iv) 121=11×11
121 কে 11 দিয়ে গুন করলে গুনফল পূর্ণঘন সংখ্যা হবে।

(v) 1225=5×5×7×7
 =(5×7)×(5×7)
=35×35
1225 কে 35 দিয়ে গুন করলে গুনফল পূর্ণঘন সংখ্যা হবে।


6. নীচের সংখ্যাগুলিকে ক্ষুদ্রতম কোন ধনাত্মক সংখ্যা দিয়ে ভাগ করলে ভাগফল পূর্নঘন সংখ্যা হবে হিসাব করে লিখি।
(i) 7000 (ii) 2662 (iii) 4394 (iv) 6750 (v) 675
সমাধানঃ
(i) 7000=7×10×10×10
  =7×103
7000 কে 7 দিয়ে ভাগ করলে ভাগফল পূর্ণঘন সংখ্যা হবে।

(ii) 2662=2×11×11×11
=2×113
2662 কে 2 দিয়ে ভাগ করলে ভাগফল পূর্ণঘন সংখ্যা হবে।

(iii) 4394=2×3×13×13×13
=6×133
4394 কে 6 দিয়ে ভাগ করলে ভাগফল পূর্ণঘন সংখ্যা হবে।

(iv) 6750= 5×5×5×3×3×3×2
=15×15×15×2
=153×2
6750 কে 2 দিয়ে ভাগ করলে ভাগফল পূর্ণঘন সংখ্যা হবে।

(v) 675=5×5×3×3×3
   =25×33
675 কে 25 দিয়ে ভাগ করলে ভাগফল পূর্ণঘন সংখ্যা হবে।


7. নীচের পূর্নঘনসংখ্যাগুলি মৌলিক উৎপাদকে বিশ্লেষণ করি ও ঘনমূল লিখি।
(i) 512     (ii) 1728     (iii) 5832
(iv) 15625 (v) 10648
সমাধানঃ
(i)
512=2×2×2×2×2×2×2×2×2
=(2×2×2) × (2×2×2)×(2×2×2)
=8×8×8
=83
512 এর ঘনমূল হল 8


(ii)
1728=2×2×2×2×2×2×3×3×3
=(2×2×3)×(2×2×3)×(2×2×3)
=12×12×12
=123
1728 এর ঘনমূল হল 12


(iii)
5832=2×2×2×3×3×3×3×3×3
=(2×3×3)× (2×3×3)×(2×3×3)
=18×18×18
=183
5832 এর ঘনমূল হল 18


(iv)
15625=5×5×5×5×5×5
=(5×5)× (5×5)×( 5×5)
=25×25×25
=253
15625 এর ঘনমূল হল 25


(v)
10648=2×2×2×11×11×11
=(2×11)× (2×11)×(2×11)
=22×22×22
=223
10648\ এর ঘনমূল হল 22








Post a Comment

0 Comments